NEA Weekly Talk Program

Analysis on Hydropower Dilemma in Nepal

Presented By:

Sushil Aryal, PhD

Contents

- I. Introduction
- II. Methodology
- III. Base Year Energy Balance and Scenario Assumptions
- IV. Results and Discussions
- V. Conclusion

I. Introduction

Background

- ➤ Electricity scenario of Nepal is dismal despite abundant hydropower potential
- ➤ Ambitious Targets
 - ➤ SDG 15 GW Hydropower and per capita consumption 1500 kwh by 2030
 - COP 26 Net zero emission by 2045
 - ➤ NDCs Reduce energy sector emissions by end-use electrification across all economic sectors
 - ➤ Energy Development Roadmap 2024 28.5 GW hydropower by 2035 (15 GW export)
- ➤ Targets more supply focused
- ➤ Hydropower targets not coupled with end-use electrification strategies
- ➤ Hydropower for domestic consumption or exports often debated in Nepal.

Hydropower potential in Nepal in GW

Source: (WECS, 2017)

Per capita electricity consumption of 2024 in MWh

Source: (MoF, 2025)

I. Introduction

Objectives of the study

Overall Objective:

> To analyze the implications of integrating end-use electrification (EEU) and cross-border electricity trade (CBET) policies on energy system and economy of Nepal.

Specific Objectives:

- 1. To project Nepal's long-term energy demand under various scenarios of end-use electrification across all the economic sectors.
- 2. To carry out least cost generation expansion planning for Nepal under various demand scenarios and estimate the capacity, investment needs and tradable surplus energy.
- 3. To examine the macroeconomic impacts of hydropower investments in terms of GDP, employment, trade balance and welfare.

II. Methodology

Figure:

Overall methodological framework of the study

III. Energy Balance and Scenario Assumptions

Base Year Energy Balance (2020,PJ)

Source: Author's Calculation

Scenario Assumptions

Table: Scenario Assumptions based on Sectoral End-use Electrification Levels by 2050

	Transport		Household	Industrial	
Scenarios	Passenger	Freight	cooking and heating	and Service ^b	
2020	< 1%	0%	4%	4%	
ETL	20%	10%	20%	20%	
ETM	50%	30%	50%	50%	
ETH	80%	60%	80%	80%	

^aElectrification level is modeled as modal split shares of electric land transport modes.

^bThermal needs of agriculture, construction, mining, manufacturing, and service sectors

Electrification
Speed →

2025	2030	2035	2040	2045	2050
5%	15%	30%	50%	75%	100%

IV. Results – Energy Demand Analysis

Electricity Demand Forecast

Figure:
Electricity
Demand
Forecast

Figure:

Per Capita
Electricity
Consumption

Energy Security and Emissions

Figure:
Energy
Sector

Emissions

IV. Results – Generation Expansion Planning

Capacity and investment Needs

Figure:

Generation
Capacity Needs

Table: Investment Needs (in 2012 BUSD)

Table: Technological Share in Generation Mix of Nepal in 2050

	National _	Least Cost Optimization Results			
Technologies	Target	ETL	ETM	ETH	
Hydro-ROR	30-35%	64%	66%	66%	
Hydro-PROR	25-30%	11%	13%	14%	
Hydro-Storage	30-35%	15%	16%	16%	
Solar	5-10%	9%	5%	4%	

Period	ETL	ETM	ETH
2020-25	8.27	8.27	8.27
2025-30	3.49	3.80	4.78
2030-35	3.84	6.45	9.96
2035-40	4.88	10.83	16.67
2040-45	9.61	19.10	28.46
2045-50	14.42	28.05	42.09
Total	44.51	76.50	110.22

IV. Results – Generation Expansion Planning

Cross-border Trading of Surplus Energy

Figure: Surplus generation

Table: Annual Surplus Trade Revenue

Years	Surplus Trade Revenue (BUSD)			
	ETL	ETM	ETH	
2020	-	-	-	
2025	1.20	1.15	1.08	
2030	1.39	1.22	1.15	
2035	1.17	1.27	1.63	
2040	1.44	1.86	2.50	
2045	1.93	3.04	4.31	
At the electrici	ty price of 7.	16 U S Ce nts j	per k W n, ave	

ge IEX price in June to August 2022

➤ Cumulative trade revenue in ETH scenario – 67 BUSD, 61% of total hydropower financing needs

IV. Results – Generation Expansion Planning

IV. Results – Economic Impact Analysis

- ➤ The GDP will grow at 5.4% per annum in ETL or baseline scenario.
- ➤ 5.86% in ETH-CBET scenario
- Employment increases with increase in hydropower investments.
- ➤ Trade deficit decreases in absence of CBET but increase in its presence.
- ➤ Current account balance is fixed, increase in income due to CBET revenue gives more economic space to consume imported goods.
- ➤ Growth in welfare is minimal in higher hydropower investment scenarios in absence of CBET.
- ➤ Major portion of income is used for hydro investment reducing the disposable income available for consumption.
- > CBET revenue will raise the income and hence the welfare.
- ➤ CBET enables Nepal to finance hydropower projects while maximizing welfare.

Figure: GDP Growth Rate

Fig: Change in Employment, Trade Deficit and Welfare in 2050 compared to Baseline (ETL) Scenario

V. Conclusion

Summary of the Findings

- ➤ Nepal's energy targets require accelerated and widespread end-use electrification beyond 80%.
- ➤ Net zero target seems too ambitious as it will require electrification across all sector go beyond 80% in next 20 years from current level of below 5%.
- > 100% renewable power mix of Nepal results in significant surplus energy even in least cost generation scenario.
- > Trading surplus energy can generate up to 61% financing needs
- > Integration of end-use electrification with CBET policies can have positive impacts in macroeconomic indicators.
- ➤ Domestic consumption and CBET should be integrated in policy discourse.
- The government shall act timely to place the policies and infrastructures for the end-use electrification especially in transport and manufacturing sectors to avoid the lock-in of fossil fuel.
- Negotiate with the neighboring countries to push existing bilateral CBET into the multilateral trade and regional market integration to create market for its surplus electricity.